

CAP 4453
 Robot Vision

Dr. Gonzalo Vaca-Castaño
gonzalo.vacacastano@ucf.edu

Administrative details

- Grader Email: viiayprakash.uct@gmail.com
- Assignment Zero:
- Due tomorrow
- Assignment 1:
- Deadline: Next Friday

Questions?

Credits

- Some of this slides comes from:
- Yogesh S Rawat (UCF)
- Noah Snavely (Cornell)
- Ioannis (Yannis) Gkioulekas (CMU)
- Mubarak Shah (UCF)
- S. Seitz
- James Tompkin
- Ulas Bagci
- L. Lazebnik

Robot Vision

2. Basics of Images

Black Body radiation

LED lights

From last class

How the spectrum appears to people and dogs

From last class

Human View (No UV Sensitivity)

Dog View
(Some UV Sensitivity)

From last class

Sensitivity to UV makes targets that block or reflect these short wavelengths visible (like a drawing in sun screen lotion)

From last class

The ability to see ultraviolet (UV) helps guide bees to the pollen containing parts of flowers

Human View (No UV Sensitivity)

Bee View (UV Sensitivity)

A large list of visual sensors

Monochrome cameras

RGB cameras

And beyond

Images using other bands

Multispectral cameras

\because FILTER WHEEL

曲 FILTER ON SENSOR

MultiSpectral cameras

- PCB inspection
- Skin characterization
- Food inspection
- Agriculture
- Analyzing crops
- Military

Multispectral Imaging: New Technology Resurrects
Centuries-Old Texts (nbenews.com)

Outline

- Image as a function
- Sampling
- Quantization
- Extracting useful information from Images
- Histogram
- Color spaces
- RGB
- HUE
- CIE
- Homework 1

Outline

- Image as a function
- Sampling
- Quantization
- Extracting useful information from Images
- Histogram
- Color spaces
- RGB
- HUE
- CIE
- Homework 1

Outline

- Image as a function
- Sampling
- Quantization
- Extracting useful information from Images
- Histogram
- Color spaces
- RGB
- HUE
- CIE
- Homework 1

Traffic movie (2000)

You learn today

Digitization

- Computers use discrete form of the images
- The process transforming continuous space into discrete space is called digitization

Digitization

- Function

$$
y=f(x)
$$

- Domain of a function
- Range of a function
- Sampling
- Discretization of domain
- Quantization

- Discretization of range

Digitization of 1D function

Digitization of 2D function

Digitization of 3D function

Digitization of an arc

Gray scale digital image

Definition

- An image P is a function defined on a (finite) rectangular subset G of a regular planar orthogonal array.
- G is called (2D) grid, and an element of G is called a pixel.
- P assigns a value of $P(p)$ to each $p \in G$

Definition

- Pictures are not only sampled
- They are also quantized
- they may have only a finite number of possible values
- i.e., 0 to 255, 0-1, ...

Digitization

Sampling

Quantization

Original
8 colors
4 colors
(256 colors)

About the picture

Lena Forsen - playmate, who became the "mother" of JPEGs

Resolution

- Also a display parameter
- defined in dots per inch (DPI) or
- measure of spatial pixel density
- standard value for recent screen technologies is 72 dpi .
- Recent printer resolutions are in 300 dpi and/or 600 dpi .

Gray scale image

- An image contains discrete number of pixels
- A simple example
- Pixel value:
- "grayscale" (or "intensity"): [0,255]

Color image

- An image contains discrete number of pixels
- A simple example
- Pixel value:
- "grayscale"
(or "intensity"): [0,255]
- "color"
- RGB: [R, G, B]
- Lab: [L, a, b]
- HSV: [H, S, V]
[213, 60, 67]

RGB Channels

RGB Channels

640

How many pixels do you need to represent this image?

RGB Channels

640

How many bytes do you need to represent this image?

RGB Color Space

Compression technique
$R=\int_{300}^{830} S(\lambda) R(\lambda) d \lambda$
$G=\int_{300}^{830} S(\lambda) G(\lambda) d \lambda$
$B=\int_{300}^{830} S(\lambda) B(\lambda) d \lambda$
$S(\lambda)$ is the light spectrum,
$R(\lambda), G(\lambda)$ and $B(\lambda)$ are the sensitivity functions

Color Cube RGB Color Format

$$
\begin{aligned}
& R=\int_{300}^{830} S(\lambda) R(\lambda) d \lambda \\
& G=\int_{300}^{830} S(\lambda) G(\lambda) d \lambda \\
& B=\int_{300}^{830} S(\lambda) B(\lambda) d \lambda
\end{aligned}
$$

$S(\lambda)$ is the light spectrum,
$R(\lambda), G(\lambda)$ and $B(\lambda)$ are the sensitivity functions

- These are colours with different spectra but with same perceptual values
- RGB colour space is the basic colour space
- Device-dependant colour space

Human Cone-cells (normalized) responsivity spectra

RGB Color Space

Compression technique

- These are colours with different spectra but with same perceptual values
- Device-dependant colour space
- RGB colour space is the basic colour space

RGB Color Space

Compression technique
$R=\int_{300}^{830} S(\lambda) R(\lambda) d \lambda$
$G=\int_{300}^{830} S(\lambda) G(\lambda) d \lambda$
$B=\int_{300}^{830} S(\lambda) B(\lambda) d \lambda$
$S(\lambda)$ is the light spectrum,
$R(\lambda), G(\lambda)$ and $B(\lambda)$ are the sensitivity functions

Color Cube RGB Color Format

$$
\begin{aligned}
& R=\int_{300}^{830} S(\lambda) R(\lambda) d \lambda \\
& G=\int_{300}^{830} S(\lambda) G(\lambda) d \lambda \\
& B=\int_{300}^{830} S(\lambda) B(\lambda) d \lambda
\end{aligned}
$$

$S(\lambda)$ is the light spectrum,
$R(\lambda), G(\lambda)$ and $B(\lambda)$ are the sensitivity functions

- a high correlation between its components
- about 0.78 for $r B R$ (cross correlation between the Band R channel)
- 0.98 for rRG
- 0.94 for $r G B$
- It is psychologically non-intuitive
- Perceptual non-uniformity (add a value have different effect for every color)

Phenomenal color spaces

- Most natural way for humans of describing colors
- Described by 3 attributes
- Hue: the colour is red, green, yellow, blue, purple ...

- Saturation: the level of non-whiteness
- Brightness is a measure of the intensity of light.

$$
I=\frac{R+G+B}{3}
$$

- HSL color space. Hue, Saturation, Luminance

$$
S=1-\left(\frac{3}{R+G+B}\right) \min (R, G, B)
$$

- transformations from the RGB space.
- inherit all the short-comings of RGB space.
$H=\cos ^{-1}\left(\frac{0.5(R-G)+(R-B)}{\sqrt{(R-G)^{2}+(R-B)(G-B)}}\right)$
where I (intensity) is used instead of V (value).
- There is usually a hue discontinuity around 360 degrees.
- This makes difficult to make arithmetic operations in such a color space.

CIELAB

measure the spectral reflectance factors of an object

Wavelength

Wavelength

CIE Colour Spaces

- CIE (Commission Internationale de l'Eclairage (illumination))

- In 1931 laid down the CIE 1931 standard colorimetric observer.
- CIE XYZ: CIE standardized the XYZ values as tristimulus values that can describe any color that can be perceived by an average human observer
- XYZ are positives
- It is device dependent
- CIELuv and CIELab: proposed in 1976
- Goal: provide a perceptually equal space
- CIElab
- L* closely matches human perception of lightness (black at 0 and white at 100)
- a* : green-red opponent colors, with negative values toward green and positive values toward red. Unbounded, usually bounded from -128 to 127
- b^{*} : blue-yellow opponents, with negative numbers toward blue and positive toward yellow. Unbounded

CIELAb

- L* measures whether the sample is light (high L*) or dark (low L*).
- The a* and b* values together represent the hue and chroma of the sample.

	std	btx
\mathbf{L}^{*}	56	58
a*	26	36
\mathbf{b}^{*}	3	9

the btx is lighter, stronger and yellower than the std

std btx

CIELab

Cielab

LAB color enhancement in Photoshop.

CieLAB transformation

import cv2
import numpy as $n p$
img=cv2.imread('overExposed.jfif')
imgcie $=c \mathrm{cv} 2 . \mathrm{cvtColor}(\mathrm{img}, \mathrm{cv} 2 . \mathrm{COLOR}$ _BGR2LAB)
imgcie $=$ imgcie.astype (np.float)
imgcie[:,:,0]= imgcie[:,:,0] -80
\#imgcie[:,:,1]= imgcie[:,:,1] -30
imgcie[imgcie<0]=0
imgcie $=$ imgcie.astype(np.uint8)
imgOut $=$ cv2.cvtColor(imgcie, cv2.COLOR_LAB2BGR)
cv2.imshow('in',img)
cv2.imshow('out',imgOut)
cv2.waitKey (0)
${ }^{\mathrm{CV} 2}$

Histogram

- A histogram is a graphic representation of numerical data that shows the data distribution. When the number of observations is large, and the bin's size is small, the histogram will be similar to the distribution density chart.
- How to create a histogram?

1. Find the range of the numerical data Range $=$ Max - Min.
2.Choose the number of bins you prefer to present.
3.Calculate the bin size: Bin size = Range/number of bins.
4.For every bin count, the total number of observations falls in the bin.
5.Present the data s a column chart, where each column represents the number of observations in a bin.

Image Histogram

Histogram Example

Count: 10192 Mean: 133.711 StdDev: 55.391

Count: 10192 Mean: 104.637 StdDev: 89.862

Min: 11
Max: 254
Mode: 23 (440)

Intensity profiles for selected (two) rows

Questions?

Coding homeworks

- Presented as a notebook using colab
- https://colab.research.google.com/
- Homeworks are posted at webcouses as a link to:
- gonzo1978/CAP4453: Colab notes for CAP 4453 (github.com)

